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Large Number Hypothesis  
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Dirac's large number hypothesis (LNH) and the Whitrow-Randall-Sciama 
relation are related to some cosmological models. The LNH and Whitrow- 
Randall-Sciama relations are neither equivalent nor consistent in general relativ- 
ity, but they may both be valid in the Brans-Dicke theory and in another theory 
considered in this paper. 

The large number hypothesis (Dirac, 1938, 1979) states that 

poet -~ (1) 

Gcxs t -1 ( 2 )  

where p, G, and t stand for the rest-energy density, the gravitational 
"constant," and the cosmic time. 

It is useful to recall the origin of these relations. One can build the 
following dimensionless numbers: 

GHo 1 ~ 10 4~ 
e2/m~c 2 (3) 

e 2 
- - ~  1040 (4) 
Gmprne 

R ~ 1 7 6  ~ 102• ( 5 )  

mp 

where e, rn~, rap, and Po stand for the experimentally measured values of 
the electronic charge and mass, the protonic mass, and the present-day p. 

On the other hand, Ho stands for the present-day Hubble "constant." 
If (3)-(5) are not accidental coincidences, then (1) and (2) are true relations. 
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Whitrow (1946), and Whitrow and Randall (1951) advanced simple 
arguments that show that we should have, for the present universe, the 
relation 

G p  ~ t -2  (6) 

and Sciama (1953) represented Mach's principle by the same relation (6). 
Later, Dicke (1962), arguing on simple dimensional arguments plus Mach's 
principle, arrived at relation (6) again. 

Teller (1948) made an estimate of the thermal history of the earth 
which, with the data available at the time, seemed to indicate that relation 
(2) did not hold. Later data on Hubble's "constant," however, could support 
relation (2) (Raychaudhuri, 1979). A very neat and up-to-date account on 
the LNH is to be found in Barrow (1990). 

It should be clear that relations (1) and (2) imply (6), but is it possible 
to have (6) and not have (1) and (2)? 

The answer to this question, in Einstein's general relativity theory, is 
yes- -of  course. 

When we write 

p = a p  (a = const) (7) 

where p stands for the cosmic pressure, we find that, if 

q -- -~ -T  = m - 1 = const (8) 

a solution is given by (Berman, 1983; Berman and Gomide, 1988) 

R = ( m D t )  l /m (D = const) 

3 
_ _  t-2 

p = 8 ~ r G m  2 

(9) 

(10) 

k = 0 (null tricurvature) 

Brans-Dicke theory, the Whitrow-Randall relation, plus the In the 
assumption q = const, leads to relations (1) and (2) (Berman and Som, 1990). 

In fact, Berman and Som (1990) show that a solution can be found 
where relation (7) is also satisfied if in relation (6) the "approximate" sign 
is substituted by an equality. For this particular case, the coupling constant 
w of the Brans-Dicke theory can only have the positive value w -  1.12 or 
w ~ 1.69. 

However, if we do not restrict relation (6) to be an equality relation, 
larger values of w are also possible, and the experimentally obtained bound 
w > 500 is possible in this framework. It has also to be pointed out that 
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Berman and Som (1990) offer not only flat models,  but also nonflat ones, 
as possible solutions obeying relations (1) and (2). 

Now, what about  A and G variables in an Einstein-like theory? 
Berman (1991) has shown that, when one supposes that the energy 

tensor conservation law is valid, as well as the Einstein field equations, 

G ~  = 8~'G(t)  T~,, + A ( t ) g ~  (11) 

where Gr g ~ ,  T.~, and A are respectively, the Einstein, metric, and energy 
tensors and the cosmological "constant ,"  and we suppose a perfect fluid law 

r . . =  - p g ~  + ( p +  p ) U . U .  (12) 

we can find solutions where relations (1) and (2) hold. We then have 

R( t )  = (mDt)  1/m (13) 

p = ap (14) 

k = 0  (15) 

G = Kt B/4~rA (16) 

A t_(2+B/4~rA) p = - -  (17) 
K 

{ 3 ~  1/2 

m = \ 8 ~ ' A + B ]  (18) 

A = Bt- :  (19) 

1 (20) 

where K, A, and B are constants. 
In order to fulfill relations (1) and (2), we need 

B 
. . . . . . .  1 (21) 

4zrA 

This implies, f rom relation (20), 

a = � 8 9  (22) 

Relation (22) ensures that for each phase of the standard cosmological 
model  we have a different power  law for the scale factor R. In fact, the 
present universe, for which we may state that a = 0, implies m = 1. This is 
a "nonaccelera ted"  universe (q = 0). Remember  that in standard cosmology, 
we have a different result, verbi gratia, m = 3/2. For the radiation phase, 
a = I /3 ,  and then we would have m = 2. This result is the same as in standard 
cosmology. 
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Let us now check  the part icle-creat ion rate o f  our  present  universe for  
this model :  

d 
r = ~ (pR 3) = 2 p R  (23) 

where H = 1 / t  is the Hubble  parameter  (recall that  rn = 1). 
Our  result can be compared  with steady-state cosmology,  where we 

have a rate 3 /2  larger, 

rss = 3 p H  (24) 

Narl ikar  (1983) states that  the order  o f  magni tude  o f  rss (and,  thus, o f  
r), is 10-41 g cm 3 sec -1, which is complete ly  inaccessible to experimental  
verification, and  thus the present  theory  cannot  be ruled out  on experimental  
g rounds  for  the t ime being. 
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